Chapter 3

Control Structures

Control structures determine the order in which the statements of a program are
executed. They are the most fundamental building blocks of programs. It can
even be shown that in a programming language with conditional statements,
loops, and assignment statements (and nothing else) one can write any program
that can be written in any language. Control structures are all that you really
need. In this chapter we will look at control structures that are common to
most programming languages in wide use, including if-statements, while-loops
and for-loops.

47

48 CHAPTER 3. CONTROL STRUCTURES

3.1 If-statements

An if-statement is used to create conditional code: code that is executed if
some condition is true, and not executed if it isn’t. There are several versions of
the if-statement; all of these have the meanings you would expect from similar
usage in English.

if <condition >:
statement_block

If the condition is True the statement_block is executed; if the condition is False,
the statement_block is ignored. The statement_block is any Python code indented
inside the if-statement.

if <condition >:
statement_block_1
else:
statement_block_2

If the condition is True then statement_block_1 is executed; if the condition is
False then statement_block_2 is executed. The statement_block_1 is any code in-
dented between the if and the else. The statement_block_2 is any code indented
under the else.

if <condition_1 >:
statement_block_1

elif <condition_2 >:
statement_block_2

elif <condition_3 >:
statement_block_3

else:
final_statement_block

The conditions are evaluated one at a time, starting from the top. If any of
them evaluate to True the corresponding statement_block (the group of state-
ments indented under the condition) is executed and then we leave the entire
statement. If none of the conditions are True then the final_statement_block

3.1. IF-STATEMENTS 49

is executed. Note that elif is just an abbreviation for else if. In all of these

statements the conditions are anything that evaluates to True or False. We call
such expressions Boolean expressions; the next section has more details about
them. The statement blocks contain any valid Python statements.

This is much simpler than it might appear. Consider, for example, the
following program. This asks the user to enter two numbers, and says which of
the numbers is the larger one and which is the smaller.

This asks for two numbers and
prints them out in order.

def main():
x = eval(input("Enter a number: "))
y = eval(input("Enter another number: "))
if x = vy:
print (" Those numbers are the same.")
elif x < y:
print ("%d < %d” % (x, y))
else:

print ("%d < %d” % (y, x))

main ()

Program 3.1.1: Example of an if-statement

When you are writing a program using conditional statements, keep in mind
that you don’t know which blocks will be executed unless you know what the
user input will be. You can get into trouble if you create variables inside some
branches of an if-statement and not in others. Consider the following code:

x = eval(input(” Enter a number: "))
if x < 10:
size = "small”

print(size)

If the user enters a number that is less than 10 this prints the word "small”.
However, if the user enters a number that is 10 or larger the variable size is
never created and so you will get an error message for the unknown varible
size when it gets to the print-statement. One way to correct this is to define
variable size outside the if-statement, so it will exist in any case:

size = "large”
x = eval(input(” Enter a number: "))
if x < 10:

50 CHAPTER 3. CONTROL STRUCTURES

size = "small”
print(size)

Alternatively, you can put an else on the if-statement to define size in case
the condition is False:

x = eval(input(” Enter a number: "))
if x < 10:

size = "small”
else:

size="large"

print (size)

When you have a chain of if-statements, as in if-elif-elif ..., remember
that you only get to the lower conditions if all of the upper conditions fail. You
can make use of this to simplify the conditions. For example, suppose we want
a program that takes a number and says how many digits it has. Program 3.1.2
does this for numbers up to 4 digits long.

This asks for a number and reports how
many digits it contains.

def main():
x = eval(input(” Enter a number between 0 and 9999: "))
if x < 10:
digits =1
elif x < 100:
digits = 2
elif x < 1000:
digits = 3
else:
digits = 4

print ("%d has %d digits.” % (x, digits))

main ()

Program 3.1.2: Compound if-statement

Note that by the time we get to the condition
elif x < 100:

we already know that the condition x < 10 has failed, so if x is less than 100 it
must have exactly 2 digits. If would be correct, but unnecessarily complicated
to write this condition as

3.1. IF-STATEMENTS 51

elif x >= 10 and x < 100:

By carefully analyzing a situation, it is often possible to simplify conditions
in your code and thus make your programs easier to read and easier to write
correctly.

We finish this section with one more example, this time computing leap
years. We will make use of this code for several programs in subsequent chapter

Example The Julian Calendar, introduced by Julius Caesar in 46 B.C., had
leap years occurring every 4 years. This equates the tropical year, the span from
one point in the cycle of the seasons to the same point the following year, to
365.25 days. This is slightly too long, and over the centuries the Julian calendar
grew out of synchronization with the natural seasons. In 1582 Pope Gregory
XIII created the Gregorian Calendar, which differs from the Julian Calendar
only in the way it computes leap-years. The Gregorian calendar was gradually
adopted throughout Europe and most of Asia. Here is its leap-year algorithm:

A year is a leap year if it is divisible by 4, unless
it is also divisible by 100, in which case it is not a
leap year unless it is also divisible by 400.

According to this algorithm, the year 1900 was not a leap year because it
is divisible by 100 and not by 400, but the year 2000 was a leap year. This
puts the length of the tropical year at 365.2425, which is very close to current
observations. Our task is to write a program that asks the user to specify a
year; the program will say whether or not this year is a leap year.

The way we stated the leap-year algorithm is not very helpful; the ”unless”
expressions don’t translate easily into code. For our program we will reformulate
the algorithm, taking the most specific conditions first. This is often a useful
strategy. We express the most specific conditions first because we know what
the answer is if those conditions are met.

For our program the conditions are:

e the year is divisible by 4
e the year is divisible by 100
e the year is divisible by 400

The most specific of these is being divisible by 400, so we start there: if the year
is divisible by 400 it must be a leap year. We can use our remainder operator %
to check for divisibility: a year is divisible by 400 if year % 400 == 0. Rather
than sprinkling print statements throughout the code, we introduce a boolean
varible isLeap that becomes True or False in the various conditions of our if-
statement. At the end we use this variable to print out whether the year is a
leap year.

The remaining cases of the analysis are similar. Program 3.1.3 shows the
resulting code for this.

52

CHAPTER 3. CONTROL STRUCTURES

This reads a year from the user and
says whether this year is a leap—year.

def main():

year = eval(input(” Enter a year: "))
if year % 400 = 0:

isLeap = True
elif year % 100 = 0:
isLeap = False

elif year % 4 = O0:
isLeap = True
else:
isLeap = False

if islLeap:

print ("%d is a leap—year.” % year)
else:

print("%d is not a leap—year.” % year)

main ()

Program 3.1.3: Determining leap years

